Part Number Hot Search : 
MBR1650 00400 TB2300H 0SERIE LS7166 LGDP4531 01111 TP2502
Product Description
Full Text Search
 

To Download AUIRL7736M2TR1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 04/07/11 hexfet ? is a registered trademark of international rectifier. description the auirl7736m2 combines the latest automotive hexfet ? power mosfet silicon technology with the advanced directfet ? packaging technology to achieve exceptional performance in a package that has the footprint of an so-8 or 5x6mm pqfn and only 0.7mm profi le. the directfet ? package is compatible with existing layout geometries used in power applications, pcb assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note an-1035 is followed regarding the manufacturing methods and processes. the directfet ? package allows dual sided cooling to maximize thermal transfer in automotive power systems. this hexfet   power mosfet is designed for applications where efficiency and power density are of value. the advanced directfet ? packaging platform coupled with the latest silicon technology allows the auirl7736m2 to offer substantial system level savings and performance improvement specifically in high frequency dc-dc, motor drive and other heavy load applications on ice, hev and ev platforms. t he auirl7736m2 can be utilized together with the auirl7732s2 as a sync/control mosfet pair in a buck converter topology. this mosf et utilizes the latest processing techniques to achieve low on-resistance and low qg per silicon area. additional features of this mosfet are 175c operating junction temperature and high repetitive peak current capability. these features combine to make this mosfet a highly efficient, robust and reliable device for high current automotive applications. auirl7736m2tr AUIRL7736M2TR1 applicable directfet outline and substrate outline  directfet   power mosfet  automotive grade directfet  isometric  ?  
?  
 ?         !   
  ? "#
$
%  &
 ? !& ? &     ? 
$  
 ? '()*   ? + 
  ,
+,  + 
 ,
 ?  +!$  !
 sb sc m2 m4 l4 l6 l8 -(.). dd g s s s s v (br)dss 40v r ds(on) typ. 2.2m max. 3.0m i d (silicon limited) 112a q g 52nc absolute maximum ratings parameter units v ds drain-to-source voltage v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i d @ t a = 25c continuous drain current, v gs @ 10v (silicon limited)  i dm pulsed drain current p d @t c = 25c power dissipation  p d @t a = 25c power dissipation  e as single pulse avalanche energy (thermally limited)  e as (tested) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj t p peak soldering temperature t j operating junction and t stg storage temperature range thermal resistance parameter typ. max. units r  ??? 60 r  12.5 ??? r  20 ??? c/w r  ??? 2.4 r 1.0  w/c v a 16 40 0.42 22 63 w 2.5 see fig. 18a,18b,16,17 260 c -55 to + 175 max. 112 79 450 179 119 68 mj

  2 www.irf.com   surface mounted on 1 in. square cu (still air).   
  with small clip heatsink (still air)   mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) notes   through  are on page 11 d s g static characteristics @ t j = 25c (unless otherwise stated) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 ??? ??? v / . 0.0 / . .0 . . 1.0 1. . v gs(th) / t j gate threshold voltage coefficient ??? -6.9 ??? mv/c gfs forward transconductance 152 ??? ??? s r g gate resistance ??? 0.9 ??? a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 gate-to-source reverse leakage ??? ??? -100 dynamic characteristics @ t j = 25c (unless otherwise stated) parameter min. typ. max. units q g total gate charge ??? 52 78 q gs1 pre-vth gate-to-source charge ??? 8.1 ??? q gs2 post-vth gate-to-source charge ??? 6.2 ??? nc q gd gate-to-drain ("miller") charge ??? 33 ??? q godr gate charge overdrive ??? 4.7 ??? q sw switch charge (q gs2 + q gd ) ??? 39.2 ??? q oss output charge ??? 31 ??? nc t d(on) turn-on delay time ??? 48 ??? t r rise time ??? 210 ??? ns t d(off) turn-off delay time ??? 56 ??? t f fall time ??? 76 ??? c iss input capacitance ??? 5055 ??? c oss output capacitance ??? 960 ??? c rss reverse transfer capacitance ??? 525 ??? pf c oss output capacitance ??? 3540 ??? c oss output capacitance ??? 860 ??? c oss eff. effective output capacitance ??? 1306 ??? diode characteristics @ t j = 25c (unless otherwise stated) parameter min. typ. max. units i s continuous source current (body diode) a i sm pulsed source current (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 32 48 ns q rr reverse recovery charge ??? 23 35 nc v gs = 4.5v, i d = 56a  p-n junction diode. mosfet symbol conditions v gs = 0v v ds = 25v showing the integral reverse v ds = 20v v gs = 16v v gs = 0v, v ds = 1.0v, f=1.0mhz v gs = 0v, v ds = 32v, f=1.0mhz see fig.11 conditions na conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma v gs = 10v, i d = 67a  v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v gs = -16v v ds = 10v, i d = 67a i f = 67a, v dd = 20v di/dt = 100a/ s  i s = 67a, v gs = 0v  v gs = 4.5v v ds = 16v, v gs = 0v v dd = 20v, v gs = 4.5v  i d = 67a r g = 6.8 ? = 1.0mhz v gs = 0v, v ds = 0v to 32v v ds = v gs , i d = 150 a i d = 67a ??? ??? ??? ??? 112 450

  www.irf.com 3 /0 
     ,  1 
+2&,3 http://www.irf.com //"# "0'4'5  5
 6 ///!  
 6 qualification information ? medium-can msl1, 260c moisture sensitivity level qualification level automotive (per aec-q101) ?? comments: this part number(s) passed automotive qualification. ir?s industrial and consumer qualification level is granted by extension of the higher automotive level. human body model class h1c (+/- 2000v) ??? aec-q101-001 charged device model n/a aec-q101-005 rohs compliant yes esd machine model class m4 (+/- 400v) ??? aec-q101-002

  4 www.irf.com fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical on-resistance vs. gate voltage fig 4. typical on-resistance vs. drain current fig 6. normalized on-resistance vs. temperature fig 5. typical transfer characteristics 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 8.0v 6.0v 4.5v 3.5v 3.0v 2.8v bottom 2.5v 60 s pulse width tj = 25c 2.5v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 60 s pulse width tj = 175c vgs top 10v 8.0v 6.0v 4.5v 3.5v 3.0v 2.8v bottom 2.5v 0 25 50 75 100 125 150 175 200 i d , drain current (a) 0 1 2 3 4 5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) t j = 25c t j = 125c vgs = 10v 1 2 3 4 5 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = -40c t j = 25c t j = 175c v ds = 25v 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 67a v gs = 10v 0 2 4 6 8 10 12 14 16 18 v gs, gate -to -source voltage (v) 1 2 3 4 5 6 7 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) i d = 67a t j = 125c t j = 25c

  www.irf.com 5 fig 7. typical threshold voltage vs. junction temperature fig 8. typical source-drain diode forward voltage fig 9. typical forward transconductance vs. drain current fig 10. typical capacitance vs.drain-to-source voltage fig.11 typical gate charge vs.gate-to-source voltage fig 12. maximum drain current vs. case temperature 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) tj = -40c tj = 25c t j = 175c v gs = 0v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 3.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150 a i d = 250 a i d = 1.0ma i d = 1.0a 0 20406080100120 i d ,drain-to-source current (a) 0 50 100 150 200 250 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 5.0v 380 s pulse width 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 i d , d r a i n c u r r e n t ( a ) 0 20 40 60 80 100 120 140 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v v ds = 8.0v i d = 67a

  6 www.irf.com fig 14. maximum avalanche energy vs. temperature fig 13. maximum safe operating area fig 15. maximum effective transient thermal impedance, junction-to-case fig 16. typical avalanche current vs.pulsewidth 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 14a 37a bottom 67a 0 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100 sec 1msec 10msec dc 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.07641 2.1e-05 0.36635 0.000737 0.94890 0.039150 1.00767 0.007321 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.01 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse)

  www.irf.com 7 fig 17. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 16, 17: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 18a, 18b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 16, 17). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 15) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av fig 18b. unclamped inductive waveforms fig 18a. unclamped inductive test circuit t p v (br)dss i as fig 19a. gate charge test circuit fig 19b. gate charge waveform v ds 90% 10% v gs t d(on) t r t d(off) t f fig 20a. switching time test circuit fig 20b. switching time waveforms vds vgs id vgs(th) qgs1 qgs2 qgd qgodr r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs 1k vcc dut 0 l s 20k   
 1      0.1 %       
 + -   25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 10 20 30 40 50 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 67a

  8 www.irf.com 
         please see an-1035 for directfet assembly details and stencil and substrate design recommendations d dd d g s ss s g = gate d = drain s = source

  www.irf.com 9 
          please see an-1035 for directfet assembly details and stencil and substrate design recommendations directfet  part marking note: for the most current drawing please refer to ir website at http://www .irf.com/package/ code a b c d e f g h j k l 0.047 0.094 0.156 0.032 0.018 0.024 max 0.250 0.201 1.10 2.30 3.85 0.78 0.35 0.58 min 6.25 4.80 1.20 2.40 3.95 0.82 0.45 0.62 max 6.35 5.05 0.090 0.043 0.152 0.031 0.023 0.014 min 0.189 0.246 metric imperial dimensions 0.78 0.82 0.032 0.031 0.032 0.78 0.82 0.031 0.015 0.017 0.38 0.42 l1 0.142 3.50 3.60 0.138 r0.003 0.02 0.08 0.001 m p 0.029 0.007 0.68 0.09 0.74 0.17 0.027 0.003 part number logo batch number date code line above the last character of the date code indicates "lead-free" "au" = gate and automotive marking

  10 www.irf.com  click on this section to link to the appropriate technical paper.  click on this section to link to the directfet website.   surface mounted on 1 in. square cu board, steady state.  t c measured with thermocouple mounted to top (drain) of part.   repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 0.030mh, r g = 50 , i as = 67a,vgs = 20v. pulse width 400 s; duty cycle 2%.
used double sided cooling, mounting pad with large heatsink.  mounted on minimum footprint full size board with metalized back and with small clip heatsink. r is measured at t j of approximately 90c. directfet  tape & reel dimension (showing component orientation). loaded tape feed direction a e note: controlling dimensions in mm code a b c d e f g h f b c imperial mi n 0.311 0.154 0.469 0.215 0.201 0.256 0.059 0.059 max 8.10 4.10 12.30 5.55 5.30 6.70 n.c 1.60 min 7.90 3.90 11.90 5.45 5.10 6.50 1.50 1.50 metric dimensions max 0.319 0.161 0.484 0.219 0.209 0.264 n.c 0.063 d h g reel dimensions note: controlling dimensions in mm std reel quantity is 4800 parts. (ordered as auirl7736m2tr). for 1000 parts on 7" reel, order AUIRL7736M2TR1 b c max n.c n.c 0.520 n.c n.c 0.724 0.567 0.606 imperial h min 330.0 20.2 12.8 1.5 100.0 n.c 12.4 11.9 standard option (qty 4800) code a b c d e f g h max n.c n.c 13.2 n.c n.c 18.4 14.4 15.4 min 12.992 0.795 0.504 0.059 3.937 n.c 0.488 0.469 metric g e f min 6.9 0.75 0.53 0.059 2.31 n.c 0.47 0.47 tr1 option (qty 1000) max n.c n.c 12.8 n.c n.c 13.50 12.01 12.01 min 177.77 19.06 13.5 1.5 58.72 n.c 11.9 11.9 metric max n.c n.c 0.50 n.c n.c 0.53 n.c n.c imperial a d

  www.irf.com 11  
 7

      81 
+     ,   91+:  8                      &6 ,    &; 7<#
&      = 5&         6
  
,>1+2   
 
    8&
 6 1+&       &     
 ,
 
   &1+2   &  6  5

5  #1+   &  6 "#&   , 5
      
 6 1+ 
 ,
 
     6 ,
     
 1+68&    
  
   5        6 + 1+  1+  ,8  ,

 &
      ,
   &   
   6+   &
       , 61+,

 ,

   61     ,,> 
6 +
1+   &   ,     ,1+      
#   
 &      1+           , 61+,

 ,
  6 1+           

,  
     
  
 &  
1+ 
   &
>   6$
?  1+        
 ?
   
1 
+  
,   
    , 
  

      #     ,
       
   
  
  
>     &     

 1+&  
      6 
   
  , 9 :7$           
   5 ,  
    
 6? 8&
      1+   ,   
   
 5 
   

  ?2&8    

,
 
 &


  
5 &6 1+          
    
  1+       , 1+  
  & 1$=$ '.-@- 5   ,     , 
   ; 7<6? 8&
             
 1+&
,,
  
56 
   
 
  

   
 
  
  
   !
"#$ %&
'"$"()
$


▲Up To Search▲   

 
Price & Availability of AUIRL7736M2TR1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X